Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Struct Biol ; 80(Pt 1): 16-25, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38088897

RESUMO

The technique of time-resolved macromolecular crystallography (TR-MX) has recently been rejuvenated at synchrotrons, resulting in the design of dedicated beamlines. Using pump-probe schemes, this should make the mechanistic study of photoactive proteins and other suitable systems possible with time resolutions down to microseconds. In order to identify relevant time delays, time-resolved spectroscopic experiments directly performed on protein crystals are often desirable. To this end, an instrument has been built at the icOS Lab (in crystallo Optical Spectroscopy Laboratory) at the European Synchrotron Radiation Facility using reflective focusing objectives with a tuneable nanosecond laser as a pump and a microsecond xenon flash lamp as a probe, called the TR-icOS (time-resolved icOS) setup. Using this instrument, pump-probe spectra can rapidly be recorded from single crystals with time delays ranging from a few microseconds to seconds and beyond. This can be repeated at various laser pulse energies to track the potential presence of artefacts arising from two-photon absorption, which amounts to a power titration of a photoreaction. This approach has been applied to monitor the rise and decay of the M state in the photocycle of crystallized bacteriorhodopsin and showed that the photocycle is increasingly altered with laser pulses of peak fluence greater than 100 mJ cm-2, providing experimental laser and delay parameters for a successful TR-MX experiment.


Assuntos
Proteínas , Síncrotrons , Análise Espectral , Proteínas/química , Cristalografia , Luz
2.
Sci Rep ; 11(1): 22311, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34785744

RESUMO

During the last decades discussions were taking place on the existence of global, non-thermal structural changes in biological macromolecules induced by Terahertz (THz) radiation. Despite numerous studies, a clear experimental proof of this effect for biological particles in solution is still missing. We developed a setup combining THz-irradiation with small angle X-ray scattering (SAXS), which is a sensitive method for detecting the expected structural changes. We investigated in detail protein systems with different shape morphologies (bovine serum albumin, microtubules), which have been proposed to be susceptible to THz-radiation, under variable parameters (THz wavelength, THz power densities up to 6.8 mW/cm2, protein concentrations). None of the studied systems and conditions revealed structural changes detectable by SAXS suggesting that the expected non-thermal THz-induced effects do not lead to alterations of the overall structures, which are revealed by scattering from dissolved macromolecules. This leaves us with the conclusion that, if such effects are present, these are either local or outside of the spectrum and power range covered by the present study.


Assuntos
Soroalbumina Bovina/química , Radiação Terahertz , Tubulina (Proteína)/química , Animais , Bovinos , Conformação Proteica , Espalhamento a Baixo Ângulo , Suínos , Difração de Raios X
3.
Int J Mol Sci ; 19(7)2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30022010

RESUMO

At a resting sarcomere length of approximately 2.2 µm bony fish muscles put into rigor in the presence of BDM (2,3-butanedione monoxime) to reduce rigor tension generation show the normal arrangement of myosin head interactions with actin filaments as monitored by low-angle X-ray diffraction. However, if the muscles are put into rigor using the same protocol but stretched to 2.5 µm sarcomere length, a markedly different structure is observed. The X-ray diffraction pattern is not just a weaker version of the pattern at full overlap, as might be expected, but it is quite different. It is compatible with the actin-attached myosin heads being in a different conformation on actin, with the average centre of cross-bridge mass at a higher radius than in normal rigor and the myosin lever arms conforming less to the actin filament geometry, probably pointing back to their origins on their parent myosin filaments. The possible nature of this new rigor cross-bridge conformation is discussed in terms of other well-known states such as the weak binding state and the 'roll and lock' mechanism; we speculate that we may have trapped most myosin heads in an early attached strong actin-binding state in the cross-bridge cycle on actin.


Assuntos
Peixes/metabolismo , Músculo Esquelético/metabolismo , Miosinas/química , Rigor Mortis/metabolismo , Sarcômeros/metabolismo , Nadadeiras de Animais/fisiologia , Animais , Miosinas/metabolismo , Conformação Proteica , Eletricidade Estática , Síncrotrons , Difração de Raios X
4.
IUCrJ ; 4(Pt 6): 769-777, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29123679

RESUMO

Unravelling the interaction of biological macromolecules with ligands and substrates at high spatial and temporal resolution remains a major challenge in structural biology. The development of serial crystallography methods at X-ray free-electron lasers and subsequently at synchrotron light sources allows new approaches to tackle this challenge. Here, a new polyimide tape drive designed for mix-and-diffuse serial crystallography experiments is reported. The structure of lysozyme bound by the competitive inhibitor chitotriose was determined using this device in combination with microfluidic mixers. The electron densities obtained from mixing times of 2 and 50 s show clear binding of chitotriose to the enzyme at a high level of detail. The success of this approach shows the potential for high-throughput drug screening and even structural enzymology on short timescales at bright synchrotron light sources.

5.
J Synchrotron Radiat ; 24(Pt 1): 323-332, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28009574

RESUMO

The macromolecular crystallography P13 beamline is part of the European Molecular Biology Laboratory Integrated Facility for Structural Biology at PETRA III (DESY, Hamburg, Germany) and has been in user operation since mid-2013. P13 is tunable across the energy range from 4 to 17.5 keV to support crystallographic data acquisition exploiting a wide range of elemental absorption edges for experimental phase determination. An adaptive Kirkpatrick-Baez focusing system provides an X-ray beam with a high photon flux and tunable focus size to adapt to diverse experimental situations. Data collections at energies as low as 4 keV (λ = 3.1 Å) are possible due to a beamline design minimizing background and maximizing photon flux particularly at low energy (up to 1011 photons s-1 at 4 keV), a custom calibration of the PILATUS 6M-F detector for use at low energies, and the availability of a helium path. At high energies, the high photon flux (5.4 × 1011 photons s-1 at 17.5 keV) combined with a large area detector mounted on a 2θ arm allows data collection to sub-atomic resolution (0.55 Å). A peak flux of about 8.0 × 1012 photons s-1 is reached at 11 keV. Automated sample mounting is available by means of the robotic sample changer `MARVIN' with a dewar capacity of 160 samples. In close proximity to the beamline, laboratories have been set up for sample preparation and characterization; a laboratory specifically equipped for on-site heavy atom derivatization with a library of more than 150 compounds is available to beamline users.

6.
Nucleic Acids Res ; 44(10): 4947-56, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27016739

RESUMO

The IncP (Incompatibility group P) plasmids are important carriers in the spread of antibiotic resistance across Gram-negative bacteria. Gene expression in the IncP-1 plasmids is stringently controlled by a network of four global repressors, KorA, KorB, TrbA and KorC interacting cooperatively. Intriguingly, KorA and KorB can act as co-repressors at varying distances between their operators, even when they are moved to be on opposite sides of the DNA. KorA is a homodimer with the 101-amino acid subunits, folding into an N-terminal DNA-binding domain and a C-terminal dimerization domain. In this study, we have determined the structures of the free KorA repressor and two complexes each bound to a 20-bp palindromic DNA duplex containing its consensus operator sequence. Using a combination of X-ray crystallography, nuclear magnetic resonance spectroscopy, SAXS and molecular dynamics calculations, we show that the linker between the two domains is very flexible and the protein remains highly mobile in the presence of DNA. This flexibility allows the DNA-binding domains of the dimer to straddle the operator DNA on binding and is likely to be important in cooperative binding to KorB. Unexpectedly, the C-terminal domain of KorA is structurally similar to the dimerization domain of the tumour suppressor p53.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Regiões Operadoras Genéticas , Proteínas Repressoras/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Plasmídeos/genética , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
7.
J Appl Crystallogr ; 48(Pt 2): 431-443, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25844078

RESUMO

A high-brilliance synchrotron P12 beamline of the EMBL located at the PETRA III storage ring (DESY, Hamburg) is dedicated to biological small-angle X-ray scattering (SAXS) and has been designed and optimized for scattering experiments on macromolecular solutions. Scatterless slits reduce the parasitic scattering, a custom-designed miniature active beamstop ensures accurate data normalization and the photon-counting PILATUS 2M detector enables the background-free detection of weak scattering signals. The high flux and small beam size allow for rapid experiments with exposure time down to 30-50 ms covering the resolution range from about 300 to 0.5 nm. P12 possesses a versatile and flexible sample environment system that caters for the diverse experimental needs required to study macromolecular solutions. These include an in-vacuum capillary mode for standard batch sample analyses with robotic sample delivery and for continuous-flow in-line sample purification and characterization, as well as an in-air capillary time-resolved stopped-flow setup. A novel microfluidic centrifugal mixing device (SAXS disc) is developed for a high-throughput screening mode using sub-microlitre sample volumes. Automation is a key feature of P12; it is controlled by a beamline meta server, which coordinates and schedules experiments from either standard or nonstandard operational setups. The integrated SASFLOW pipeline automatically checks for consistency, and processes and analyses the data, providing near real-time assessments of overall parameters and the generation of low-resolution models within minutes of data collection. These advances, combined with a remote access option, allow for rapid high-throughput analysis, as well as time-resolved and screening experiments for novice and expert biological SAXS users.

8.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 1): 67-75, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25615861

RESUMO

Small-angle X-ray scattering (SAXS) of macromolecules in solution is in increasing demand by an ever more diverse research community, both academic and industrial. To better serve user needs, and to allow automated and high-throughput operation, a sample changer (BioSAXS Sample Changer) that is able to perform unattended measurements of up to several hundred samples per day has been developed. The Sample Changer is able to handle and expose sample volumes of down to 5 µl with a measurement/cleaning cycle of under 1 min. The samples are stored in standard 96-well plates and the data are collected in a vacuum-mounted capillary with automated positioning of the solution in the X-ray beam. Fast and efficient capillary cleaning avoids cross-contamination and ensures reproducibility of the measurements. Independent temperature control for the well storage and for the measurement capillary allows the samples to be kept cool while still collecting data at physiological temperatures. The Sample Changer has been installed at three major third-generation synchrotrons: on the BM29 beamline at the European Synchrotron Radiation Facility (ESRF), the P12 beamline at the PETRA-III synchrotron (EMBL@PETRA-III) and the I22/B21 beamlines at Diamond Light Source, with the latter being the first commercial unit supplied by Bruker ASC.


Assuntos
Robótica , Espalhamento a Baixo Ângulo , Ensaios de Triagem em Larga Escala , Síncrotrons
9.
Cell Microbiol ; 17(5): 607-20, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25363599

RESUMO

The formation and release of outer membrane vesicles (OMVs) is a phenomenon observed in many bacteria, including Legionella pneumophila. During infection, this human pathogen primarily invades alveolar macrophages and replicates within a unique membrane-bound compartment termed Legionella-containing vacuole. In the current study, we analysed the membrane architecture of L. pneumophila OMVs by small-angle X-ray scattering and biophysically characterized OMV membranes. We investigated the interaction of L. pneumophila OMVs with model membranes by Förster resonance energy transfer and Fourier transform infrared spectroscopy. These experiments demonstrated the incorporation of OMV membrane material into liposomes composed of different eukaryotic phospholipids, revealing an endogenous property of OMVs to fuse with eukaryotic membranes. Cellular co-incubation experiments showed a dose- and time-dependent binding of fluorophore-labelled OMVs to macrophages. Trypan blue quenching experiments disclosed a rapid internalization of OMVs into macrophages at 37 and 4 °C. Purified OMVs induced tumour necrosis factor-α production in human macrophages at concentrations starting at 300 ng ml(-1). Experiments on HEK293-TLR2 and TLR4/MD-2 cell lines demonstrated a dominance of TLR2-dependent signalling pathways. In summary, we demonstrate binding, internalization and biological activity of L. pneumophila OMVs on human macrophages. Our data support OMV membrane fusion as a mechanism for the remote delivery of virulence factors to host cells.


Assuntos
Membrana Celular/metabolismo , Exossomos/metabolismo , Interações Hospedeiro-Patógeno , Legionella pneumophila/fisiologia , Fatores de Virulência/metabolismo , Fenômenos Biofísicos , Células Cultivadas , Endocitose , Células Epiteliais/metabolismo , Exossomos/química , Transferência Ressonante de Energia de Fluorescência , Humanos , Legionella pneumophila/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Fator de Necrose Tumoral alfa/metabolismo
10.
Innate Immun ; 20(8): 787-98, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24122298

RESUMO

The lung is constantly exposed to immune stimulation by LPS from inhaled microorganisms. A primary mechanism to maintain immune homeostasis is based on anti-inflammatory regulation by surfactant protein A (SP-A), a secreted component of lung innate immunity. The architecture of LPS aggregates is strongly associated with biological activity. We therefore investigated whether SP-A affects the physico-chemical properties of LPS. Determination of the three-dimensional aggregate structure of LPS by small-angle X-ray scattering demonstrated that SP-A induced the formation of multi-lamellar aggregate structures. Determination of the acyl-chain-fluidity of LPS aggregates by Fourier transform infrared (FTIR) spectroscopy showed that the phase transition temperature of LPS was reduced in the presence of SP-A. The phosphate groups at the diglucosamine backbone of LPS represent important functional groups for the bioactivity of LPS. FTIR analysis revealed changes in the vibrational bands νas PO-(2), indicating an interaction of SP-A with the 1-phosphate, but not with the 4'-phosphate. The physico-chemical changes induced by SP-A were associated with up to 90% reduction in LPS-induced TNF-α-production by human macrophages. In conclusion, our data demonstrate that the SP-A/LPS interaction induces conformational changes in LPS aggregates leading to biologically less active structures, thereby providing a new molecular mechanism of immune modulation by SP-A.


Assuntos
Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Proteína A Associada a Surfactante Pulmonar/farmacologia , Células HEK293 , Humanos , Técnicas In Vitro , Lipopolissacarídeos/química , Ativação de Macrófagos/efeitos dos fármacos , Conformação Molecular/efeitos dos fármacos , Conformação Proteica , Fator de Necrose Tumoral alfa/metabolismo
11.
Protein Expr Purif ; 88(2): 243-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23384479

RESUMO

The glycolytic enzyme pyruvate kinase (PK) generates ATP from ADP through substrate-level phosphorylation powered by the conversion of phosphoenolpyruvate to pyruvate. In contrast to other bacteria, Enterobacteriaceae, such as pathogenic yersiniae, harbour two pyruvate kinases encoded by pykA and pykF. The individual roles of these isoenzymes are poorly understood. In an attempt to make the Yersinia enterocolitica pyruvate kinases PykA and PykF amenable to structural and functional characterisation, we produced them untagged in Escherichia coli and purified them to near homogeneity through a combination of ion exchange and size exclusion chromatography, yielding more than 180 mg per litre of batch culture. The solution structure of PykA and PykF was analysed through small angle X-ray scattering which revealed the formation of PykA and PykF tetramers and confirmed the binding of the allosteric effector fructose-1,6-bisphosphate (FBP) to PykF but not to PykA.


Assuntos
Piruvato Quinase/química , Piruvato Quinase/genética , Yersinia enterocolitica/enzimologia , Cromatografia em Gel , Cromatografia por Troca Iônica , Escherichia coli/genética , Expressão Gênica , Vetores Genéticos/genética , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Modelos Moleculares , Multimerização Proteica , Piruvato Quinase/isolamento & purificação , Piruvato Quinase/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Yersinia enterocolitica/química , Yersinia enterocolitica/genética
12.
Antimicrob Agents Chemother ; 57(1): 168-76, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23089752

RESUMO

The subunit ε of bacterial F(1)F(O) ATP synthases plays an important regulatory role in coupling and catalysis via conformational transitions of its C-terminal domain. Here we present the first low-resolution solution structure of ε of Mycobacterium tuberculosis (Mtε) F(1)F(O) ATP synthase and the nuclear magnetic resonance (NMR) structure of its C-terminal segment (Mtε(103-120)). Mtε is significantly shorter (61.6 Å) than forms of the subunit in other bacteria, reflecting a shorter C-terminal sequence, proposed to be important in coupling processes via the catalytic ß subunit. The C-terminal segment displays an α-helical structure and a highly positive surface charge due to the presence of arginine residues. Using NMR spectroscopy, fluorescence spectroscopy, and mutagenesis, we demonstrate that the new tuberculosis (TB) drug candidate TMC207, proposed to bind to the proton translocating c-ring, also binds to Mtε. A model for the interaction of TMC207 with both ε and the c-ring is presented, suggesting that TMC207 forms a wedge between the two rotating subunits by interacting with the residues W15 and F50 of ε and the c-ring, respectively. T19 and R37 of ε provide the necessary polar interactions with the drug molecule. This new model of the mechanism of TMC207 provides the basis for the design of new drugs targeting the F(1)F(O) ATP synthase in M. tuberculosis.


Assuntos
Antituberculosos/química , Proteínas de Bactérias/antagonistas & inibidores , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , Subunidades Proteicas/antagonistas & inibidores , Quinolinas/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Diarilquinolinas , Escherichia coli/genética , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/genética , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Ressonância Magnética Nuclear Biomolecular , Subunidades Proteicas/química , Subunidades Proteicas/genética , Prótons , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alinhamento de Sequência , Espectrometria de Fluorescência
13.
J Bioenerg Biomembr ; 44(3): 341-50, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22562380

RESUMO

The 95 kDa subunit a of eukaryotic V-ATPases consists of a C-terminal, ion-translocating part and an N-terminal cytosolic domain. The latter's N-terminal domain (~40 kDa) is described to bind in an acidification-dependent manner with cytohesin-2 (ARNO), giving the V-ATPase the putative function as pH-sensing receptor. Recently, the solution structure of the very N-terminal segment of the cytosolic N-terminal domain has been solved. Here we produced the N-terminal truncated form SCa104₋363 of the N-terminal domain (SCa1₋363) of the Saccharomyces cerevisiae V-ATPase and determined its low resolution solution structure, derived from SAXS data. SCa104₋363 shows an extended S-like conformation with a width of about 3.88 nm and a length of 11.4 nm. The structure has been superimposed into the 3D reconstruction of the related A1A0 ATP synthase from Pyrococcus furiosus, revealing that the SCa104₋363 fits well into the density of the collar structure of the enzyme complex. To understand the importance of the C-terminus of the protein SCa1₋363, and to determine the localization of the N- and C-termini in SCa104₋363, the C-terminal truncated form SCa106₋324 was produced and analyzed by SAXS. Comparison of the SCa104₋363 and SCa106₋324 shapes showed that the additional loop region in SCa104₋363 consists of the C-terminal residues. Whereas SCa104₋363 is monomeric in solution, SCa106₋324 forms a dimer, indicating the importance of the very C-terminus in structure formation. Finally, the solution structure of SCa104₋363 and SCa106₋324 will be discussed in terms of the topological arrangement of subunit a and cytoheisn-2 in V-ATPases.


Assuntos
Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/química , Sequência de Aminoácidos , Dicroísmo Circular , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas , Saccharomyces cerevisiae/genética , Soluções/química , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
14.
Proc Natl Acad Sci U S A ; 109(8): 2878-83, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22328151

RESUMO

The tropoelastin monomer undergoes stages of association by coacervation, deposition onto microfibrils, and cross-linking to form elastic fibers. Tropoelastin consists of an elastic N-terminal coil region and a cell-interactive C-terminal foot region linked together by a highly exposed bridge region. The bridge region is conveniently positioned to modulate elastic fiber assembly through association by coacervation and its proximity to dominant cross-linking domains. Tropoelastin constructs that either modify or remove the entire bridge and downstream regions were assessed for elastogenesis. These constructs focused on a single alanine substitution (R515A) and a truncation (M155n) at the highly conserved arginine 515 site that borders the bridge. Each form displayed less efficient coacervation, impaired hydrogel formation, and decreased dermal fibroblast attachment compared to wild-type tropoelastin. The R515A mutant protein additionally showed reduced elastic fiber formation upon addition to human retinal pigmented epithelium cells and dermal fibroblasts. The small-angle X-ray scattering nanostructure of the R515A mutant protein revealed greater conformational flexibility around the bridge and C-terminal regions. This increased flexibility of the R515A mutant suggests that the tropoelastin R515 residue stabilizes the structure of the bridge region, which is critical for elastic fiber assembly.


Assuntos
Comunicação Celular , Tecido Elástico/metabolismo , Tropoelastina/química , Tropoelastina/metabolismo , Adesão Celular , Células Cultivadas , Tecido Elástico/química , Tecido Elástico/ultraestrutura , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Hidrogéis , Microscopia Confocal , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Tamanho da Partícula , Estrutura Terciária de Proteína , Proteólise , Soluções , Relação Estrutura-Atividade , Temperatura , Tropoelastina/ultraestrutura
15.
Nat Struct Mol Biol ; 18(5): 564-70, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21478865

RESUMO

Nuclear hormone receptors (NHRs) control numerous physiological processes through the regulation of gene expression. The present study provides a structural basis for understanding the role of DNA in the spatial organization of NHR heterodimers in complexes with coactivators such as Med1 and SRC-1. We have used SAXS, SANS and FRET to determine the solution structures of three heterodimer NHR complexes (RXR-RAR, PPAR-RXR and RXR-VDR) coupled with the NHR interacting domains of coactivators bound to their cognate direct repeat elements. The structures show an extended asymmetric shape and point to the important role played by the hinge domains in establishing and maintaining the integrity of the structures. The results reveal two additional features: the conserved position of the ligand-binding domains at the 5' ends of the target DNAs and the binding of only one coactivator molecule per heterodimer, to RXR's partner.


Assuntos
PPAR gama/química , Receptores de Calcitriol/química , Receptores Citoplasmáticos e Nucleares/química , Sequências Repetitivas de Ácido Nucleico , Receptor X Retinoide alfa/química , Sítios de Ligação , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica , Humanos , Ligantes , Modelos Moleculares , Multimerização Proteica , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo
16.
J Biol Chem ; 286(20): 18213-21, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21454481

RESUMO

PhzE utilizes chorismate and glutamine to synthesize 2-amino-2-desoxyisochorismate (ADIC) in the first step of phenazine biosynthesis. The PhzE monomer contains both a chorismate-converting menaquinone, siderophore, tryptophan biosynthesis (MST) and a type 1 glutamine amidotransferase (GATase1) domain connected by a 45-residue linker. We present here the crystal structure of PhzE from Burkholderia lata 383 in a ligand-free open and ligand-bound closed conformation at 2.9 and 2.1 Å resolution, respectively. PhzE arranges in an intertwined dimer such that the GATase1 domain of one chain provides NH(3) to the MST domain of the other. This quaternary structure was confirmed by small angle x-ray scattering. Binding of chorismic acid, which was found converted to benzoate and pyruvate in the MST active centers of the closed form, leads to structural rearrangements that establish an ammonia transport channel approximately 25 Å in length within each of the two MST/GATase1 functional units of the dimer. The assignment of PhzE as an ADIC synthase was confirmed by mass spectrometric analysis of the product, which was also visualized at 1.9 Å resolution by trapping in crystals of an inactive mutant of PhzD, an isochorismatase that catalyzes the subsequent step in phenazine biosynthesis. Unlike in some of the related anthranilate synthases, no allosteric inhibition was observed in PhzE. This can be attributed to a tryptophan residue of the protein blocking the potential regulatory site. Additional electron density in the GATase1 active center was identified as zinc, and it was demonstrated that Zn(2+), Mn(2+), and Ni(2+) reduce the activity of PhzE.


Assuntos
Amônia/química , Proteínas de Bactérias/química , Burkholderia/enzimologia , Multimerização Proteica , Transaminases/química , Domínio Catalítico , Cristalografia por Raios X , Ligantes , Metais Pesados/química , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
17.
J Struct Biol ; 173(2): 271-81, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21134462

RESUMO

The addition of glycosylphosphatidylinositol (GPI) anchors to eukaryotic proteins in the lumen of the endoplasmic reticulum is catalyzed by the transamidase complex, composed of at least five subunits (PIG-K, PIG-S, PIG-T, PIG-U and GPAA1). Here PIG-K(24-337) and PIG-S(38-467) from yeast, including the residues 24-337 and 38-467 of the entire 411 and 534 residue protein, respectively, was produced in Escherichia coli and purified to homogeneity. Analysis of secondary structure by circular dichroism spectroscopy showed that yPIG-K(24-377) comprises 52% α-helix and 12% ß-sheet, whereas yPIG-S(38-467) involves 58% α-helix and 18% ß-sheet. The radius of gyration (R(g)) and the maximum size (D(max)) of both proteins have been analyzed by small angle X-ray scattering (SAXS) and determined to be 2.64±0.3 and 10.3±0.1 nm (yPIG-K(24-377)) as well as 3.06±0.02 nm (R(g)) and 16.9±0.4 nm (D(max)) in the case of yPIG-S(38-467), respectively. Using an ab initio approach, the first low-resolution solution structures of both proteins were restored. yPIG-K(24-377) is an elongated particle consisting of an egg-like portion and a small globular segment linked together by an 1.9 nm long stalk. yPIG-S(38-467) forms an elongated molecule in solution with a larger domain of 10.1 nm in length, a diameter of 9.1 nm and a smaller domain of 6.7 nm in length and 3.4 nm in width. The two domains of yPIG-S(38-467) are tilted relative to each other. Finally, the arrangements of PIG-K and PIG-S inside the ensemble of the transamidase complex are discussed.


Assuntos
Aminoaciltransferases/química , Aminoaciltransferases/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Leveduras/enzimologia , Dicroísmo Circular , Biologia Computacional , Processamento de Proteína Pós-Traducional
18.
Innate Immun ; 17(5): 427-38, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20682588

RESUMO

Lipopolysaccharides (LPSs) from Gram-negative bacteria are strong elicitors of the human immune systems. There is strong evidence that aggregates and not monomers of LPS play a decisive role at least in the initial stages of cell activation of immune cells such as mononuclear cells. In previous reports, it was shown that the biologically most active part of enterobacterial LPS, hexa-acyl bisphosphorylated lipid A, adopts a particular supramolecular conformation, a cubic aggregate structure. However, little is known about the size and morphology of these aggregates, regarding the fact that LPS may have strong variations in the length of the saccharide chains (various rough mutant and smooth-form LPS). Thus, in the present paper, several techniques for the determination of details of the aggregate morphology such as freeze-fracture and cryo-electron microscopy, analytical ultracentrifugation, laser backscattering analysis, and small-angle X-ray scattering were applied for various endotoxin (lipid A and different LPS) preparations. The data show a variety of different morphologies not only for different endotoxins but also when comparing different applied techniques. The data are interpreted with respect to the suitability of the single techniques, in particular on the basis of available literature data.


Assuntos
Biopolímeros/metabolismo , Lipídeo A/metabolismo , Infecções por Salmonella/microbiologia , Salmonella enterica/metabolismo , Salmonella enterica/ultraestrutura , Biopolímeros/química , Biopolímeros/genética , Configuração de Carboidratos , Microscopia Crioeletrônica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Lipídeo A/química , Lipídeo A/genética , Mutação/genética , Infecções por Salmonella/imunologia , Salmonella enterica/genética , Salmonella enterica/patogenicidade , Relação Estrutura-Atividade , Ultracentrifugação , Difração de Raios X
19.
Biochim Biophys Acta ; 1808(1): 360-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20840841

RESUMO

Vacuolar ATPases use the energy derived from ATP hydrolysis, catalyzed in the A(3)B(3) sector of the V(1) ATPase to pump protons via the membrane-embedded V(O) sector. The energy coupling between the two sectors occurs via the so-called central stalk, to which subunit F does belong. Here we present the first low resolution structure of recombinant subunit F (Vma7p) of a eukaryotic V-ATPase from Saccharomyces cerevisiae, analyzed by small angle X-ray scattering (SAXS). The protein is divided into a 5.5nm long egg-like shaped region, connected via a 1.5nm linker to a hook-like segment at one end. Circular dichroism spectroscopy revealed that subunit F comprises of 43% α-helix, 32% ß-sheet and a 25% random coil arrangement. To determine the localization of the N- and C-termini in the protein, the C-terminal truncated form of F, F(1-94) was produced and analyzed by SAXS. Comparison of the F(1-94) shape with the one of subunit F showed the missing hook-like region in F(1-94), supported by the decreased D(max) value of F(1-94) (7.0nm), and indicating that the hook-like region consists of the C-terminal residues. The NMR solution structure of the C-terminal peptide, F(90-116), was solved, displaying an α-helical region between residues 103 and 113. The F(90-116) solution structure fitted well in the hook-like region of subunit F. Finally, the arrangement of subunit F within the V(1) ATPase is discussed.


Assuntos
Proteínas de Saccharomyces cerevisiae/química , ATPases Vacuolares Próton-Translocadoras/química , Biofísica/métodos , Dicroísmo Circular , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Modelos Estatísticos , Peptídeos/química , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/enzimologia , Espalhamento de Radiação , Espalhamento a Baixo Ângulo , Raios X
20.
J Bioenerg Biomembr ; 42(1): 1-10, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20082212

RESUMO

Subunit alpha of the Escherichia coli F(1)F(O) ATP synthase has been produced, and its low-resolution structure has been determined. The monodispersity of alpha allowed the studies of nucleotide-binding and inhibitory effect of 4-Chloro-7-nitrobenzofurazan (NBD-Cl) to ATP/ADP-binding. Binding constants (K ( d )) of 1.6 microM of bound MgATP-ATTO-647N and 2.9 microM of MgADP-ATTO-647N have been determined from fluorescence correlation spectroscopy data. A concentration of 51 microM and 55 microM of NBD-Cl dropped the MgATP-ATTO-647N and MgADP-ATTO-647N binding capacity to 50% (IC(50)), respectively. In contrast, no effect was observed in the presence of N,N'-dicyclohexylcarbodiimide. As subunit alpha is the homologue of subunit B of the A(1)A(O) ATP synthase, the interaction of NBD-Cl with B of the A-ATP synthase from Methanosarcina mazei Gö1 has also been shown. The data reveal a reduction of nucleotide-binding of B due to NBD-Cl, resulting in IC(50) values of 41 microM and 42 microM for MgATP-ATTO-647N and MgADP-ATTO-647N, respectively.


Assuntos
4-Cloro-7-nitrobenzofurazano/farmacologia , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , ATPases Bacterianas Próton-Translocadoras/química , ATPases Bacterianas Próton-Translocadoras/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/antagonistas & inibidores , ATPases Bacterianas Próton-Translocadoras/antagonistas & inibidores , ATPases Bacterianas Próton-Translocadoras/genética , Sequência de Bases , Primers do DNA/genética , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/genética , Cinética , Modelos Moleculares , Proteínas Motores Moleculares/antagonistas & inibidores , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Subunidades Proteicas , ATPases Translocadoras de Prótons/antagonistas & inibidores , Espalhamento a Baixo Ângulo , Espectrometria de Fluorescência , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...